# Urn models and peer-to-peer file sharing ${ }^{1)}$ 

## Technical Research Center of Finland, VTT

Ilkka Norros and Hannu Reittu
${ }^{1)}$ to appear in Physcomnet 08, Berlin 2008

## urns

- at time $n, W_{n}$ white balls and $B_{n}$ black balls
- draw randomly a ball from the urn
- reinforcement matrix:

$$
A=\left(\begin{array}{ll}
\alpha & \beta \\
\beta & \alpha
\end{array}\right)
$$

- when a color $i$ is drawn color $j$ is reinforced by $A_{i j}$


## some cases

- Polýa urn: $\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$
- Has a 'random limit': $W_{n} /\left(n+B_{0}+W_{0}\right)$ is a martingale and convergences to a limiting r.v. with beta distribution $\beta\left(W_{0}, B_{0}\right)$
- say, $B_{0}=W_{0}=1$, uniform distribution in $(0,1)$
- 'self-organization' (automata, physics), 'lockin' (economics)


## Ehrenfests' urn:

- (equilibrium gas...), overal number of balls is const $=N$

$$
\left(\begin{array}{ll}
-1 & 1 \\
1 & -1
\end{array}\right)
$$

- $W_{n}$ tends to r.v. with $\operatorname{Bin}(N, 1 / 2)$


## BERNARD FRIEDMAN'S URN

- $\beta>0$

$$
A=\left(\begin{array}{ll}
\alpha & \beta \\
\beta & \alpha
\end{array}\right)
$$

- $W_{n} /\left(B_{n}+W_{n}\right)$ converges with pr. 1 to $1 / 2$
- balancing!
- we rediscovered this: $\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$


## 79 pages of further material:

Probability Surveys
Vol. 4 (2007) 1-79
ISSN: 1549-5787
DOI: 10.1214/07-PS094

# A survey of random processes with reinforcement* 

Robin Pemantle

e-mail: pemantle@math.upenn.edu

## Earlier work: file sharing in closed system

- File sharing using overlays(SpaSWiN 2007 and ITC20), 2 papers:

Toward modeling of a single file broadcasting in a closed network

Hannu Reittu and Ilkka Norros

On uncoordinated file distribution with non-altruistic downloaders

Ilkka Norros ${ }^{1}$, Balakrishna Prabhu ${ }^{2}$, and Hannu Reittu ${ }^{1}$

## New topic, started in Amsterdam 2007, with SCALP-partners

- open system, with constant rate ( $\lambda$ ) of arriving peers
- two chunks 0 and 1
- upon arriving, peer selects the first chunk to be downloaded, -> (0) and (1) nodes
- two 'algorithms':
- 1) deterministic last chunk ('DLC'): with prob. $1 / 2$
- 2) use Friedman-urn ('F-a.'): $\quad\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$


## 4+1 types of nodes:

(0) has no chunks, takes chunk 0 first
(1) has no chunks, takes chunk 1 first

1 has chunk 1
0 has chunk 0
s the seed node (permanent), has both chunks

## urns:



## flows



## F-algorithm, arriving peer contacts 0 , becomes a (1) node

arrival


## arrivals in DLC


departure: 01 -> 1


A productive contact (0)0 -> 0+0

(0)0 -> 0+0


## urn process

- Contact: $x y$, (uniformly randomly from urn(s))
- $x \in\{(0),(1), 0,1\}$
- $y \in\{0,1, s\}$
- x downloader
- y uploader


## arrivals in F-a:

- $\varnothing 0$-> (1) + 0
- $\varnothing 1$-> (0) + 1


## 'chemistry' of contacts:

- (0) $0->0+0$
- (0)s -> 0 + s
- (1) 1 -> $1+1$
- 01 -> 1
- 10 -> 0
- rest, say, (0)1-> (0)+1 - nothing happens,
- arrivals:
- $\varnothing 0$-> (1) + 0
- Ø1 -> (0) + 1
microscopic view on process, exp-delays between contacts
$\uparrow \mathrm{n}_{\mathrm{i}}$


## a sample paths of $n_{1}$ and $n_{0}, \lambda=20$ (DLC)


a sample path of $n_{1}, \lambda=200$
(F-a.) -> oscillations arround equilib.?


## one hump in more details:


all components, similar period $\approx 15$, independent on $\lambda$ oscillations in phase, or in antiphase:


## diff. equations for DLC 1 corresponds to seed

$$
\begin{aligned}
& \dot{n}_{(1)}=\frac{\lambda}{2}-\frac{n_{(1)}\left(n_{1}+1\right)}{n_{1}+n_{0}+1} \\
& \dot{n}_{(0)}=\frac{\lambda}{2}-\frac{n_{(0)}\left(n_{0}+1\right)}{n_{1}+n_{0}+1} \\
& \dot{n}_{1}=\frac{n_{(1)}\left(n_{1}+1\right)}{n_{1}+n_{0}+1}-\frac{n_{1}\left(n_{0}+1\right)}{n_{1}+n_{0}+1} \\
& \dot{n}_{0}=\frac{n_{(0)}\left(n_{0}+1\right)}{n_{1}+n_{0}+1}-\frac{n_{0}\left(n_{1}+1\right)}{n_{1}+n_{0}+1}
\end{aligned}
$$

## some comments:

- stable focus around $(\lambda, \lambda, \lambda, \lambda)$
- without seed, no stability!
- trajectories have nothing in common with random system!


## The same for F-a.

$$
\begin{aligned}
& \dot{n}_{(1)}=\lambda \frac{\left(n_{0}+1 / 2\right)}{n_{1}+n_{0}+1}-\frac{n_{(1)}\left(n_{1}+1\right)}{n_{1}+n_{0}+1} \\
& \dot{n}_{(0)}=\lambda \frac{\left(n_{1}+1 / 2\right)}{n_{1}+n_{0}+1}-\frac{n_{(0)}\left(n_{0}+1\right)}{n_{1}+n_{0}+1} \\
& \dot{n}_{1}=\frac{n_{(1)}\left(n_{1}+1\right)}{n_{1}+n_{0}+1}-\frac{n_{1}\left(n_{0}+1\right)}{n_{1}+n_{0}+1} \\
& \dot{\operatorname{n}}_{0}=\frac{n_{(0)}\left(n_{0}+1\right)}{n_{1}+n_{0}+1}-\frac{n_{0}\left(n_{1}+1\right)}{n_{1}+n_{0}+1}
\end{aligned}
$$

- has also stable focus, around all= $\lambda$
- random system seems to oscillate around approx. same equilibrium


## performance? (F-a)

$\tau \sim$ average time to make a contact, (emulates chunk download delay)
$N(t)$ - number of nodes in the system at time $t$

$$
N=\lim _{t \rightarrow \infty} \frac{1}{t} \int_{0}^{\infty} N(s) d s
$$

we have (?) $N=4 \tau \lambda$
Little's Theorem:
average time for a peer to obtain the file, $T=\frac{N}{\lambda}=4 \tau$ lower bound for $T$ is $2 \tau$

F-algorithm, interesting conjectures ???:
$>$ regular oscillations of all components, around equilib.
$>$ seed is not necessary after the start
$>$ oscillations are in phase or in antiphase $\lambda$
$>$ fequency ( $4 \pi$ ?), independent on arrival rate,
$>$ mean delay of a peer $=4 \tau$ (only 2 excess contacts!)

Thank You!

